
Page 1

ABSTRACT
Design critiquing systems are a type of intelligent user
interface used to support human designers in decision mak-
ing. This paper places design critics in the larger context of
intelligent user interface approaches and surveys several
critiquing systems. Each approach and system is evaluated
with respect to a five-phase design improvement process.
This paper concludes with a summary of the state of the art
in critiquing systems and recommendations for future
research directions.

1. Introduction
A design critic is an intelligent user interface mechanism
embedded in a design tool that analyzes a design in the con-
text of decision-making and provides feedback to help the
designer improve the design. Feedback from critics may
report design errors, point out incompleteness, suggest
alternatives, or offer heuristic advice. One important dis-
tinction between critics and traditional analysis tools is the
tight integration of design critics into the designer’s task:
critics interact with designers while they are engaged mak-
ing design decisions.

The goals of this survey are to:

• describe the motivations for critiquing systems and their
range of application,

• clarify the concepts involved in design critiquing,
• define a design improvement process model that describes

interaction between designers and design critiquing
systems,

• situate the critiquing approach in the larger context of
intelligent user interface techniques,

• review and evaluate existing critiquing systems,
• guide the reader to critiquing systems literature,
• summarize the state of design critiquing today, and
• recommend new directions for research and development

of critiquing systems.

1.1. Motivation for Design Critiquing Systems
Brooks outlines some of the accidental and essential diffi-
culties of software development [7]. Designers in all fields
face many accidental and essential difficulties during
design. Accidental difficulties are those that are somewhat
arbitrary and usually result from the historical actions of
other people in the field. For example, designers need to
deal with the idiosyncrasies of the particular design notation
they use. Often accidental difficulties can be eliminated

with better tool support. Essential difficulties of design are
those that are inherent to the nature of design and cannot
easily be resolved or changed. Essential difficulties of
design arise from essential activities of design: learning
about the problem and solution domains, decision making,
managing interactions between decisions, ordering deci-
sions in a design process, communicating with other stake-
holders, and evaluating the design. Design critics primarily
address the essential decision-making challenges faced by
designers, however they can help with accidental difficul-
ties as well.

The inclusion of critics in a design tool is motivated by the
following observations of the decision-making needs of
human designers.

1. Designers’ limited  domain  knowledge.   In complex
domains, no single designer has all the knowledge needed
to make a complete design. Instead, most complex systems
are designed by teams of stakeholders with each stakeholder
providing some of the needed knowledge and imposing
their own goals and priorities. Even experienced designers
need knowledge support in complex domains or when
working with unfamiliar design elements. The “thin spread
of application domain knowledge” has been identified as a
general problem in software development [2]. This problem
has been worsened by software’s newest crisis: a shortage
of trained workers [6]. Design critics can address this by
supplying design knowledge at the time when it is needed.

2. Low relative cost of immediate revision.  Sound deci-
sion making is especially important in the early phases of
the software life-cycle. Errors and oversights introduced in
high-level design become much more expensive to remove
as development proceeds. Typical estimates put the cost of
fixing an error during the testing phase at more than ten
times the cost of fixing the same error in high-level
design [8, 9]. Design critics can address this by identifying
errors early.

3. Continuous  learning.  Designers must continuously
learn new skills, design methods, technologies, and design
elements [98-104]. For example, designers of component-
based software systems must frequently learn new integra-
tion technologies and the characteristics of new compo-
nents. Design critics can address this by identifying
problems as they arise and providing explanations of the
underlying issues.

4. Cost of failures arising from design errors.  In safety-
critical systems, financial systems, and other critical sys-
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tems the potential cost of design errors is great [66]. Design
critics provide one form of support for detecting and remov-
ing these errors.

5. Time-to-market.   The time needed to complete a design
task can be substantial. Industry is placing increasing
emphasis on development methods that reduce time-to-mar-
ket. Pressure to reduce design time may result in poor
design decisions, fewer design reviews, and ultimately more
design errors that offset the benefits of bringing a product to
market quickly. Design critics can reduce design time by
automatically detecting problems that might otherwise
require manual effort to detect. Furthermore, critics can
help designers make decisions that help speed other phases
of development. For example, a testability critic applied
during software design might help reduce the testing effort
needed to bring a product to market.

6. Risk management.  Iterative development has several
advantages over the waterfall development life-cycle, nota-
bly risk management [11]. Many of these advantages
depend on the software product progressing through a series
of intermediate states that are stable and allow evaluation.
Design critics can help reduce risk by reducing the number
of undetected errors present in the design at any given time.

1.2. The Nature of Design

Design critiquing systems are intended to support designers,
so any definition of “design critiquing system” must rely on
definitions of “design” and “designer.” We use the word
“design” to refer to both an artifact and a process. 

A design artifact can be generically thought of as a set of
interrelated design elements. For example, a design for a
computer program might be represented as a set of proce-
dures, classes, variables, source files, user interface screens,
and software components. The relationships between these
design elements include inheritance, calls, containment, and
uses. The main purpose of the design artifact is to guide
future implementation, without completely determining all
implementation details. 

The design process is a series of design decisions made over
a period of time. These decisions include choice of design
elements, their characteristics, and relationships. The design
process is typically both a learning process and an iterative
one. As designers progress through the series of decisions,
they come to understand more of the implications of the
problem and the relevant features of the solution domain;
this new understanding allows them to reevaluate previous
decisions. Schoen’s theory of reflection-in-action indicates
that designers cannot make design decisions in isolation,
instead they must make design decisions in the context of a
design process that considers multiple interrelated
decisions [108, 109]. Designers must construct a partial
design, evaluate, reflect on, and revise it, until they are
ready to extend it further. Simon states that “[One can]
think of the design process as involving, first, the generation
of alternatives and, then, the testing of these alternatives
against a whole array of requirements and constraints” [10].
Guindon, Krasner, and Curtis note the same effect as part of
a study of software developers [105]. Calling it “serendipi-

tous design,'” they noted that as the developers worked
hands-on with the design, their mental model of the prob-
lem situation improved, hence improving their design.

It is customary to think of solutions to design problems in
terms of a hierarchical plan. Hierarchical decomposition is a
common strategy to cope with complex design situations.
However, in practice, designers have been observed to
perform tasks in an opportunistic order [105,  107,  110].
The cognitive theory of opportunistic design explains that
although designers plan and describe their work in an
ordered, hierarchical fashion, in actuality, they choose
successive tasks based on cognitive cost. Simply stated,
designers do not follow even their own plans in order, but
choose steps that are mentally least expensive among
alternatives.

The cognitive cost of a task depends on the background
knowledge of designers, accessibility of pertinent
information, and complexity of the task. Designers'
background knowledge includes their design strategies or
schemas [111]. If they are lacking knowledge about how to
structure a solution or proceed with a particular task, they
are likely to delay this task. Accessibility of information
may also cause a deviation in planned order. If designers
must search for information needed to complete a task, that
task might be deferred. Complexity of a task roughly
corresponds to the number of smaller tasks that comprise it.

Priority or importance of a step is the primary factor that
supersedes cognitive cost in decision ordering. Priority or
importance may be set by external forces, e.g., an
organizational goal or a contract. Designers may also set
their own priorities. In some observations, designers placed
a high priority on attending to overlooked steps or fixing
identified errors [107].

The theory of opportunistic design outlines a “natural”
design process in which designers choose their next steps to
minimize cognitive cost. However, there are inherent
dangers in this “natural” design process. Mental context
switches occur when designers change from one task to
another. When starting a new step or revisiting a former
one, designers must recall schemas and information needed
for the task that were not kept in mind during the
immediately preceding task. Inconsistencies can evolve
undetected. Some requirements may be overlooked or
forgotten as the designer focuses on more engaging ones.
Guindon, Krasner, and Curtis observed the following
difficulties.

The main breakdowns observed are: (1) lack of spe-
cialized design schemas; (2) lack of a meta-schema
about the design process leading to poor allocation of
resources to the various design activities; (3) poor pri-
oritization of issues leading to poor selection of alter-
native solutions; (4) difficulty in considering all the
stated or inferred constraints in defining a solution;
(5) difficulty in performing mental simulations with
many steps or test cases; (6) difficulty in keeping
track and returning to subproblems whose solution
has been postponed; and (7) difficulty in expanding
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or merging solutions from individual subproblems to
form a complete solution. [105]

Furthermore, since designers cannot make all decisions
simultaneously at the beginning of the design process, they
are likely to use simplifying assumptions and place-holder
elements that serve to structure the design and narrow the
set of options considered. These initial decisions are
tentative and must be reconsidered later.

Designs are typically evaluated with respect to many
interdependent criteria. For example, a software system can
be evaluated with respect to usability, performance,
maintainability, or functional completeness. For each
criterion the design may be classified as acceptable or
unacceptable. Designs within the acceptable range may
usually be compared to determine which is better or worse.
For example, a source code file may be syntactically legal
or illegal, and within the legal range the code may be more
or less readable. Some of these evaluations are objective,
while others are subjective. It is often difficult to predict the
impact of a particular design decision on a particular
evaluation criterion. For example, flattening a class
inheritance hierarchy may make the design more
maintainable or less maintainable, depending on the nature
of future modifications. Since these evaluations involve
multiple design elements, decisions based on them must be
reconsidered if any of the elements are changed.

1.3. What are Critiquing Systems?
In this subsection we discuss the elements of the critiquing
approach, give a very brief scenario of interaction with a
critiquing system, review definitions of critiquing systems
found in previous work, and present our revised definition.

The elements of the critiquing approach are an artifact being
constructed, a designer making decisions or choices about
that artifact, and timely feedback from design critics to the
designer. One central idea of the critiquing approach is that
analysis should be used to improve designers’ task
performance and that it is most helpful when its results are
provided to designers in the context of their decision
making. Traditional analysis approaches also seek to inform
designers’ decision making. However, critiquing differs
from traditional analysis approaches in that the designer’s
cognitive needs are made central. Specifically, we include
the designer’s mental context as part of the designer’s
decision making context. This places additional emphasis
on delivering feedback quickly, before the designer’s short-
term memory fades, and on supplying contextual
information in the feedback that helps the designer
reconstruct prior mental states.

Traditional approaches to design analysis tools follow the
authoritative assumption: they support design evaluation by
proving the presence or absence of well defined properties.
This allows them to give definitive feedback to the
designer, but limits their application to late in the design
process after the designer has formalized substantial parts of
the design and may have lost the mental context of the
problematic decisions. The critiquing approach follows the
informative assumption: designers are assumed to normally

make design decisions on their own, and analysis is used to
support designers by informing them of potential problems,
possible corrective actions, and pending decisions. Critics
are written to pessimistically detect potential problems.
They need not go so far as to prove the presence of
problems; in fact, formal proofs are often not possible, or
meaningful, on partially specified designs. This approach
aids designers in reviewing their decisions, avoids the need
to assume that critics have complete knowledge, and
facilitates incremental development and improvement of
critics.

For example, a software designer using Argo/UML might
experience the following scenario. The designer uses
Argo/UML in much the same way that other object-oriented
design tools are used: he or she places classes and associa-
tions in a design diagram. Upon placing each class, several
critics fire to indicate that part of the design has been
started, but not yet finished: the new class has not yet been
given a name and it lacks instance variables, associations,
and methods. As the designer works to further define the
design these incompleteness critics withdraw their criticism,
but new criticism may be raised. For example, a correctness
critic fires if the designer specifies circular inheritance.
Design feedback from critics is always available during nor-
mal tool use, but it is presented so as not to disrupt the
designer’s train of thought. In Argo/UML small visual indi-
cations of errors are placed directly on the design diagram,
and a hierarchical list of all outstanding feedback items is
always available (Figure 1). At any time the designer may
view design feedback, improve his understanding of the
state of the design and domain knowledge, and move for-
ward with the design by resolving identified problems. A
more detailed usage scenario is presented in the next sec-
tion, and brief scenarios are presented as needed to explain
the systems reviewed.

Table 1 shows some of the definitions of critiquing systems
found in the literature. We have added italics to each defini-
tion to highlight key phrases that differentiate it from the
others. 

The definition in Table 1 given by Langlotz and Shortliffe
defines critiques as explanations of differences. Their sys-
tem, ONCOCIN, arose from an effort to increase the expla-
nation producing power of an existing expert system. The
emphasis was on the system’s solution; the doctor’s solu-
tion was used only to choose which parts of the system’s
solution needed to be explained. The hope was that better
explanation capabilities would make the system more
acceptable to its users.

Miller’s definition of critiquing system places more empha-
sis on the user’s solution. However, Miller’s system,
ATTENDING, was developed in an effort to make medical
consulting expert systems more acceptable to their intended
users, much like ONCOCIN. 

The first two definitions in Table 1 are early ones that do
not imply much interaction between the designer and the
system. In contrast, the definition given by Fischer and col-
leagues introduces a cognitive aspect that shifts the primary
focus away from simple observations of user acceptance
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and to the cognitive needs of human designers. Support for
Schoen’s theory of reflection-in-action implies a tight inte-
gration of critics into design tools and a significant level of
interaction between designers and critics during design
tasks. It is this definition of critiquing that is closest to our
own.

Silverman’s definition is mainly concerned with the nature
of human error and categories of errors. His definition of
critiquing implies that critics not only help to correct the
errors at hand, but that they identify and may even cure
designers of certain human failings. Silverman’s survey of
critiquing systems is very inclusive: “For example, source
code debuggers and language sensitive editors criticize the
syntactic properties of the user’s task result. Code skeleton
graphers and dataflow analyzers critique completeness and
clarity and code optimizers critique the workability of pro-
grams” [4]. To Silverman, the nature of the interaction that
the designer has with the system is not the main point.
Instead, critics are any system that evaluates the designer
with the intent of changing his or her behavior. “The quality
of the human’s solution is a sign of the level of task perfor-
mance he or she is capable of” [4]. In describing how gram-
mar checkers detect the use of passive voice, Silverman
writes that “curing technical writers of this class of deeply
ingrained errors probably requires... multiple strategies of
criticism”[4].

Table 1: Selected Definitions of Critiquing System

Langlotz and Shortliffe describing ONCOCIN: “A cri-
tique is an explanation of the significant differences
between the plan that would have been proposed by the
expert system and the plan proposed by the user.” [36]

Miller on ATTENDING: “A critiquing system is a com-
puter program that critiques human generated
solutions.”[39] 

Fischer et al. on Janus: “Critics operationalize Schoen’s
concept of a situation that talks back. They use knowl-
edge of design principles to detect and critique subopti-
mal solutions constructed by the designer.” [52] 

Silverman and Mehzer describing their theory of error
and critiquing: “Expert critiquing systems are a class of
program that receive as input the statement of the prob-
lem and the user-proposed solution. They produce as out-
put a critique of the user’s judgment and knowledge in
terms of what the program thinks is wrong with the user-
proposed solution.”[66]

Sumner, Bonnardel, and Kallak describing VDDE: “Cri-
tiquing systems embedded in [design] environments aug-
ment designers’ cognitive processes by analyzing design
solutions for compliance with criteria and constraints
encoded in the system’s knowledge-base.” [69]

Figure 1: Screenshot of Argo/UML
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Each of the first four definitions attempts to define or rede-
fine the concept of critiquing. The last definition is repre-
sentative of much of the more recent work in critiquing that
consists of the application of the critiquing approach to new
domains. It speaks of applying arbitrary criteria and con-
straints, and critiquing is viewed as a user interface
approach that is distinct from the underlying knowledge-
base. 

Our definition of critiquing differs from those in Table 1 in
several ways. We position critiquing as an intelligent user
interface mechanism that can add value to standard direct-
manipulation or forms-based design tools, rather than as a
more acceptable repackaging of expert system technology.
Unlike Silverman, we do not desire the system be critical of
the designer’s abilities. Opportunities for improvement are
simply that; we do not interpret them as signs of underlying
limitations of the designer. Like Fischer’s definition, we
require that critics provide cognitive support for human
decision-making, but we do not limit that support to a single
theory of design. All of the definitions in Table 1 stop at
informing the designer of the existence of problems; we go
a step farther by defining the goal of critiquing as helping to
carry out design improvements. We use the term “construc-
tive” to emphasize that a critic provides this additional level
of support.

A critiquing system includes more than merely critics. A
critiquing system must support the application of critics
during design. However, most also include support for critic
authoring, management of the feedback from critics, or a
strategy for scheduling the application of critics.

1.4. Scope of the Survey

This survey covers work related to critiquing systems at
two levels. First, it describes, compares, and evaluates six
approaches to intelligent user interfaces. Then it focuses on
systems that follow the critiquing approach. Figure 2 shows
a space of intelligent user interfaces, the sets of systems that
fall under each approach reviewed in Section 3, and the
individual critiquing systems reviewed in Section 4.

The quality of the knowledge contained in these systems
plays a large role in determining the quality of their design
support. However, this survey does not attempt to evaluate
the domain-specific knowledge content of the diverse sys-
tems reviewed. Instead, we assume that the embedded
knowledge is, for the most part, correct and useful. We
focus on the features of each approach or system and evalu-
ate them in terms of their potential support for design tasks.

The preceding subsection gave several definitions of the
term “design critiquing system.” These definitions are the
basis for the desired critiquing system capabilities listed in

Table 2. Not all the systems reviewed provide all of these
capabilities; unsupported capabilities are discussed for each
system in the appropriate subsection of Section 4. Some of
these capabilities overlap the others, but they are listed
explicitly for clarity.

In Section 4 we review several examples of critiquing sys-
tems. Here are some things that are not critiquing systems.

1. Compilers.  The primary purpose of a compiler is to con-
vert a program from one language to another (usually
machine code). Compilers generate error messages, but they
do so in a batch process after the source files have been pre-
pared. Compilers only differentiate between legal and ille-
gal programs; they lack knowledge needed to differentiate
good legal programs from poor ones. Any program is
accepted if it has a legal interpretation, even if it is unlikely
that the user intended that particular interpretation. In con-
trast, critics differentiate between legal designs and may
pessimistically identify likely errors or other improvement
opportunities in perfectly legal designs. Furthermore, the

Definition:
A design critic is an intelligent user interface mecha-
nism embedded in a design tool that analyzes a design 
in the context of decision-making and provides feed-
back to help the designer improve the design.

Figure 2: Survey Scope

Level 1: Intelligent User Interface Approaches
Level 2:
Critics

Tutors

Coaches
UI Agents

Word 
Correctors

Wizards

Each dot is a system reviewed.

Table 2: Desired Critiquing Capabilities

C1. Identifies opportunities for design improvement

C2. Provides knowledge to support designers in making 
design decisions

C3. Supports reflection-in-action

C4. Provides feedback about design problems while the 
designer is still in the mental context of the design decision 
that caused or exposed the error 

C5. Operates on partially specified designs

C6. Distinguishs between good and poor designs, not just 
legal and illegal designs

C7. Allows heuristic rules

C8. Provides support for carrying out design improve-
ments

C9. Provides feedback in a useful and usable format
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feedback produced by compilers is for the most part uncon-
trolled and unorganized. Compilers fail to provide capabili-
ties C1, C3-C9. Compilers can also act as program checkers
(see below) to the extent that they provide warning mes-
sages.

2. Program checkers.  Program checkers such as “lint” are
similar to critiquing systems in that they have knowledge of
common errors and can provide advice on potential
improvements. Application of heuristic rules can be con-
trolled through a vast array of command line options and
preprocessor directives. However, since they are not inte-
grated into the tools that programmers use to enter design
decisions (i.e., text editors) and they must be explicitly
invoked, they do not provide our desired capability of pro-
viding feedback while designers are in the mental context of
a decision (C4). 

3. Syntax directed editors.  Syntax directed editors pre-
vent the construction of syntactically invalid programs by
constraining what can be entered [33]. Programs can be in
incomplete states, but they can never be in states that are
syntactically complete and invalid. Syntax directed editors
typically provide little explanation of why a particular
design manipulation is illegal (missing C2), and they do not
distinguish among good and poor legal programs (missing
C6).

4. Organizational memories.  Organizational memory sys-
tems, such as AnswerGarden [32], can contain heuristic
knowledge that differentiates good designs from poor ones.
However, the designer must proactively search for this
knowledge; it is not automatically delivered at the time that
it is needed. A designer would have to suspect that an error
has been committed before they would have any reason to
check the organizational memory. Furthermore, the
designer would have to understand the design guidelines in
the organizational memory and correctly apply them to his
design. Organizational memory systems provide weak or no
support for capabilities C1, C3, C4, and C8.

5. Expert systems. Critiquing systems may be imple-
mented with expert system techniques, but the traditional
expert system user interface is not a critiquing system. Tra-
ditional expert systems take a problem specification as
input, apply domain-specific heuristics to solve the prob-
lem, and output the solution. It is the designer’s responsibil-
ity to accept or decline the computed solution. Most expert
systems use heuristic rules and many deal with incomplete
specifications and provide some explanation of their solu-
tion. Expert systems are not critiquing systems because they
replace rather than aid the designer. Furthermore, since the
designer is not directly engaged in decision making, it can
be very difficult for the designer to recognize that part of the
generated solution is incorrect, and override the expert sys-
tem’s decisions to repair the failure. Traditional expert sys-
tems can succeed in domains where they can cost-
effectively achieve a high degree of certainty. Critiquing
systems are likely to succeed in more open-ended domains
where it is impractical to embed complete knowledge, or
where professional designers are unwilling to cede deci-
sion-making. Section 4 explains that some of the first cri-

tiquing systems were developed to replace medical expert
systems.

Many of these other types of systems can be made to fit the
definition of critiquing systems by adding new features and
integrating them with design tools. For example, the Unix
“lint” utility could be the basis of a critiquing system if it
were integrated into a text editor, applied automatically as
the programmer edits the program, and if its feedback was
better controlled and presented in a more organized form.
Likewise, organizational memory systems could be made
into critiquing systems by formally representing some of the
situations under which a specific part of the memory should
be retrieved, and then proactively delivering that knowledge
to designers when the situation is detected.

1.5. Organization of the Paper

Section 2 defines a five phase design improvement process
called the ADAIR critiquing process. Section 3 covers the
first level of the survey by describing several approaches to
intelligent user interfaces and evaluating them with respect
to the criteria for design support introduced in Section 2.
Section 4 covers the second level of the survey by narrow-
ing the discussion to critiquing systems and applying the
same design support evaluation criteria. Section 5 con-
cludes the paper by summarizing the state of the art in cri-
tiquing systems and identifying opportunities for future
research.

2. The ADAIR Critiquing Process
It is common for a survey to define a set of evaluation crite-
ria. These criteria often relate to one another rather than
being completely orthogonal. Our main contribution is the
identification of a relationship among the evaluation criteria
that serves to better organize our evaluation and guides our
recommendations for future research.

We structure our evaluation criteria around the phases of a
process (Figure 7) to highlight a temporal dependency
among the areas of design support provided by the
approaches and systems reviewed. For example, a critiquing
system cannot provide strong support for detecting prob-
lems if does not first activate appropriate critics, and it can-
not advise the designer of problems if has not first detected
the problems.

The definitions of critiquing systems given in Table 1 imply
a simple detect-advise process: (1) critics detect potential
problems in a design, and (2) these critics advise the
designer of the problems. This process is repeated for each
design problem detected and multiple instances of this pro-
cess may be active concurrently. Critiquing systems can be
evaluated based on their support for these two phases, but
they must also be evaluated with respect to the relevance of
their design feedback to the designer’s current task, and
support for guiding or making design improvements. Below
we describe five more sophisticated processes that include
additional phases and then we describe our own critiquing
process model and give an example usage scenario.
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2.1. Previous Work on Critiquing Processes
The Janus family of critiquing systems adds a new phase to
the beginning of the detect-advise critiquing process: appro-
priate critics are activated based on a specification of design
goals. When using Janus, the designer enters a design into
the system, but also fills out a form to specify the design
goals. For example, if the designer specifies that he is work-
ing on a kitchen for use by a person living alone, then critics
that support family kitchens are deactivated. If the designer
later specifies that the resale value of the house is very
important, critics relevant to resale value will be activated.
The observation that designs and specifications co-evolve is
central to the Janus family [53, 60]. Figure 3 shows a cri-
tiquing process proposed in 1991 by Fischer et al.

Sumner, Bonnardel, and Kallak [69] define the critiquing
process shown in Figure 4. In this process the critiquing
system performs three major steps: analyzing the design,
signaling design errors, and delivering rationale that
explains the problem and possible solutions. In addition to
the phases of the detect-advise process, this process outlines
the improvement activities of the designer. Specifically, in
the final step, the designer is expected to modify the design
to resolve problems or modify the rationale related to the
design decision at hand.

Gertner uses the critiquing process in Figure 5 to describe
TraumaTIQ, a medical critiquing system that emphasizes
real-time interactions with a doctor during emergency med-
ical treatment [70]. Like Janus, this system deals explicitly
with the user’s goals. However, in TraumaTIQ, the goals
are inferred from the user’s actions rather than stated
directly. 

Silverman’s survey of critiquing systems [4] describes the
critiquing process shown in Figure 6. Much like the detect-
advise process model, this process model centers on the
detection of errors and the generation of textual feedback to

the designer. Silverman adds discussion of influencing and
repairs. Influencers are graphical annotations on the design
that help the designer avoid mistakes from the start. For
example, if a new design element cannot be placed near an
existing one, the “off-limits” area is highlighted in red
before the designer attempts the placement. Influencers act
before and during the time when the designer works on a
particular design subtask. 

As described below, we have attempted to merge and
extend these process models to clarify our own understand-
ing of the role of critics and document the functionality of
our own critiquing system. The resulting process model is
the described in the next subsection.

2.2. Phases of the ADAIR Process

The ADAIR critiquing process is named after the five
phases that make up the process: Activate, Detect, Advise,
Improve, and Record. Design support systems and
designers repeatedly work through these phases over the
course of a design. The phases are shown in Figure 7 as a
linear sequence, however some phases may be skipped in
certain situations, and multiple instances of the process may

Figure 3: Critiquing Process Described by Fischer et al. 
(adapted from [49])
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be concurrently active at any given time. The ADAIR
phases are not necessarily contiguous: other work often
intervenes.

The ADAIR process is useful in evaluating the complete-
ness of design support provided by a given approach or sys-
tem. In fact, the majority of this paper uses the ADAIR
process to structure its evaluations and comparisons. Not all
of the reviewed approaches and systems support all phases,
but in cases where a given approach or tool does not support
a given phase, it can usually be improved by adding support
for that phase. 

We believe ADAIR to be a complete model in the sense that
it contains elements that can be mapped to all of the ele-
ments of previous critiquing processes. ADAIR contains the
detect-advise process as its core. The specification sheets
and critiquing perspectives of Janus map to ADAIR’s Acti-
vate phase. Steps 1 through 7 in Figure 4 map to the Detect
and Advise phases of ADAIR, and step 8 maps to the
Improve phase. The activities in Gertner’s process model
(Figure 5) map to ADAIR’s Activate, Detect, and Advise
phases. The majority of the boxes in Figure 6 map to the
Detect and Advise phases. The word “repair” in Figure 6
maps to part of ADAIR’s Improve phase. Furthermore, we
believe that the ADAIR critiquing process model is com-
plete in the sense that it has been useful in characterizing
every critiquing system that we have found in the literature.

For clarity, we describe the process in terms of critics, but in
Section 3 we demonstrate that it is also applicable to
coaches, tutors, agents, and other forms of intelligent user
interfaces.

Activate. In the first phase, an appropriate subset of all
available critics is selected for activation. Critics that are

relevant and timely to the designer’s current decisions
should be activated so as to support those decisions. A cri-
tiquing system may have hundreds of critics that address a
wide range of possible design issues. Only some of these
critics will be appropriate to the designer’s current task.
Activating all critics would unnecessarily waste available
machine resources and would de-emphasize those critics
that are truly timely and relevant. Some of the reviewed sys-
tems rely on the designer to explicitly specify the critics that
should be activated, other systems attempt to infer rele-
vance and timeliness from the state of the design and vari-
ous user models. Increasing support for activation tends to
make the advice provided by the system more useful to
designers and reduces the amount of feedback presented
that is not useful.

Detect. Second, active critics detect assistance opportuni-
ties and generate advice. The most common type of assis-
tance opportunity is the identification of a syntactic or
simple semantic error. Other opportunities for assistance
include identifying incompleteness in the design, identify-
ing violations of style guidelines, delivery of expert advice
relevant to design decisions, or “advertisements” for appli-
cable automation. Many of the approaches and systems
reviewed assume that detection is done using a rule-base.
Increasing support for detection by adding new types of
detection mechanisms broadens the range of advice that the
system can offer.

Advise. Third, design feedback items are presented to
advise the designer of the problem and possible
improvements. This phase is central to the concept of
supporting the designer’s decision-making; the presence of
this phase differentiates critiquing systems from automated
problem solving systems. Feedback may take the form of
message displayed in a dialog box or feedback pane, or it
may take the form of a visual indication in the design
document itself (e.g., a wavy, red underline). Two events
must occur for the designer to benefit from design feedback:
the feedback must be presented and the designer must
understand it. Much of the potential benefit of critiquing is
associated with this phase: the feedback item improves the
designer’s understanding of the status of the design, the
explanation provided improves the designer’s knowledge of
the domain, and the designer is directed to fix problems, this
ultimately results in more knowledgeable designers and
better designs that have fewer errors and better
conformance to stylistic conventions. Realizing these
benefits requires effective means for designers to manage
feedback and careful phrasing of problem descriptions and
suggestions. Increasing support for the presentation of
advice helps designers make more effective use of the
feedback that they are given. 

Improve. Fourth, if the designer agrees that a change is
prudent, he or she makes changes to improve the design and
resolve identified problems. Fixing the identified error is
likely to be one of the most frequent forms of improvement.
Other types of improvement clarify the fact that the feed-
back is irrelevant rather than directly change the offending
design elements. For example, the designer might change
the goals of the design in reaction to an improved under-

Figure 6: Silverman’s Critiquing Process (from [4])
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standing of the problem or solution domain, or a change
might be made to some aspect of the design that is outside
the representation used by the design tool. Design support
systems can aid designers in making improvements by pro-
viding suggestions for improvements or corrective automa-
tions that fix the identified problem (semi-)automatically.
Increasing support for the Improve phase reduces the proce-
dural knowledge and effort needed for designers to make
improvements and increases the likelihood that designers
will follow through on the advice of critics. 

Record. In the final phase, the resolution of each feedback
item is recorded so that it may inform future decision-
making. Having a record of problem resolutions is
important later in design because each design decision
interacts with others. Often a design change that fixes one
problem causes another problem. When a new problem is
identified designers often need to know why the problem
arose, or they risk reintroducing problems that had
previously been resolved. Critics help elicit design rationale
as part of the normal design process by acting as foils1 that
give designers a reason to explain their decisions. A recent
evaluation of a critiquing system found that experienced
designers often explained their decisions in response to
criticism with which they disagreed [69]. Furthermore,
feedback items can also be resolved based on action taken
outside of the design tool and these actions must be
recorded to avoid presenting the feedback again. For
example, one critic might warn that using a “beta” software
component in a design requires a commitment from the
quality assurance manager; once that commitment is
obtained the issue is resolved and the feedback should no
longer be presented, even though the design artifact is still
in the state where the problem was detected. Increasing
support for the Record phase provides designers with more
design context on which to base decisions and improves the
usefulness of feedback over time. Furthermore, recording
the outcomes of criticism and collecting metrics on the
impact of individual critics is key to effective maintenance
of critiquing systems.

The Activate and Detect phases are similar in that they both
apply predicates to the design artifact and take action if the
predicate is satisfied: in the Activate phase the action is to
activate critics and in the Detect phase the action is to gen-
erate feedback. It would be possible to simplify the process
model by combining these phases, however we have sepa-
rated them because they can occur at different times and
because they use algorithms with different reuse character-
istics. The results of activation predicates typically can only
change when part of the user model changes, rather than in
reaction to design changes which occur more frequently.
The strategies used to activate critics primarily compare
attributes of the critics to attributes of the design process,
user model, and goals model. These strategies can be
domain specific, but they are likely to be based on reusable,
domain-independent critiquing strategies. In contrast, the
algorithms and predicates used in the detection phase con-

sider attributes of the design itself, are much more domain
specific, and are much less reusable across critiquing
systems.

In the ADAIR critiquing process generation of feedback is
done in the Detect phase, rather than in a separate Generate
phase. We choose to model these two activities as one phase
because our experience in building a family of critiquing
systems has shown that much of the work of detecting prob-
lems is in gathering specific pieces of information from the
design representation and computing intermediate results.
This same information is needed during the generation of
feedback. Some of the critiquing systems described in
Section 4 have a dialog generation component in their
architectures, however this text generation is done based on
a data structure that is produced during problem detection.
The presentation of this feedback data structure as English
text falls under the Advise phase.

2.3. ADAIR Scenario
In this scenario we illustrate the ADAIR process by describ-
ing how critiquing features in Argo/C2 support each phase.2
Specifically, the software architect using Argo/C2 is
prompted to improve a decision about component selection.
To emphasize the fact that the architect maintains control,
we structure the scenario as an initial situation and a branch-
ing sequence of steps leading to six alternative conclusions.
The relationship between these steps is summarized in
Figure 11.

Argo/C2 is a software architecture design tool with critics, a
“to do” list, and a process model and goal model that are
used to keep criticism timely and relevant to the design task
at hand [87]. Argo’s decision model is derived from the
state of its process model and consists of a list of domain-
oriented decision types, each of which is prioritized
(Figure 9). A C2-style software architecture specifies a set
of software components, the messages that each sends and
receives, and the communication relationships between
components.

Step 1.  The software architect is working on designing an
HTML editing tool (Figure 8). White boxes in the diagram
represent software components, black boxes represent buses
that broadcast messages from one set of components to
another, and arcs represent communication relationships.
The architecture is in an early stage of completion: some
components are already chosen, configured, and connected,
although many other aspects of the functionality of the sys-
tem have not yet been addressed.  

Step 2: Activate.  The user and goal models indicate that
the architect is willing to consider alternative component
choices, i.e., alternative critics are active. The state of the
decision model is shown in Figure 9. Argo activates all crit-
ics that are timely and relevant, including an alternative
component selection critic.

1. “Foil” is a playwright’s term for a minor character who’s main purpose
is to help define a major character through dialog.

2. Not all of the functionality used in this scenario is implemented in
Argo/C2. The infrastructure for providing wizards has been implemented
in Argo/UML but has not be transitioned to the earlier Argo/C2 tool.
Rather than use two partial scenarios with examples from two different
domains, we explain all the features in the context of a single example.
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Step 3: Detect.  Argo/C2 applies all active critics. An alter-
native critic detects that the SpellQuick spell-checking com-
ponent has the same interface as two other library
components: FlexiSpell and FreeSpell. This critic deter-
mines component substitutability by finding equivalent
messages in the components’ interfaces. It represents a
component’s interface as a set of messages that can be sent
or received. Messages are considered equivalent if they
have the same name and the same number and types of
arguments. If all messages used in the current component
have equivalents in another, then the critic will suggest con-
sidering the other component. Since message semantics are
not considered, the architect will need to apply his or her
own knowledge. The critic constructs a feedback item data
structure, and the fact that the feedback was produced is
recorded in the design history.

Step 4: Advise.  Argo/C2’s “to do” list displays the new
feedback item as shown in Figure 10. The architect contin-
ues working on the architecture uninterrupted. Eventually
he or she reaches a reflective point and looks at outstanding
design criticism to evaluate the state of the design and
decide what should be done next. While browsing the list of
“to do” items, the architect sees the headline of the alterna-
tive critic’s feedback.

Step 5: Advise.  The architect reads the problem descrip-
tion and realizes that choosing SpellQuick was fairly arbi-
trary. Here the architect’s understanding of the state of the
architecture is improving, even though the design artifact
has not changed yet.

Step 6: Improve.  In this case, the architect decides to fol-
low the critic’s advice and manually performs several
manipulations to achieve the desired state. The architect

looks at the alternatives and chooses FlexiSpell. He or she
deletes SpellQuick; this also deletes any relationships
between SpellQuick and other components in the architec-
ture. The architect then inserts FlexiSpell, parameterizes it,
and connects it to the same components. During this process
several other critics may raise or withdraw their criticism as
the state of the partially specified architecture changes.

Step 7: Record.  Each of the actions performed by the
architect is individually added to the design history. With-
out explicit rationale from the architect, the alternative critic
that fired initially can, at best, withdraw its criticism
because one of its suggested alternatives was considered.
The same critic is likely to fire again with the criticism that

Figure 8: Argo/C2 Modeling an HTML Editor Figure 9: Argo/C2’s Decision Model

Figure 10: Argo/C2’s “To Do” List User Interface
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there is still another alternative component that has not been
considered.

Step 8: Improve.  We now move to the second of the six
branches shown in Figure 11. In this branch of the scenario
the architect looks at the suggested alternative components
and decides to keep the current component. This improves
the architect’s understanding of and confidence in the cur-
rent design, but it does not modify the design artifact itself.

Step 9: Record.  The architect presses the “Dismiss” button
to indicate that the matter should be considered resolved.
Argo prompts the architect to enter rationale. He or she
optionally types a description of why the suggested alterna-
tives were not selected and presses “Reason Given Below”
(Figure 12). A new record is added to the design history
with the annotation that it was explicitly resolved by the
architect along with the rationale. This particular item will
not be posted on the “to do” list again.

Step 10: Advise/Improve.  In this branch of the scenario
we assume that the feedback item references a wizard that
can be used to swap an alternative component for the cur-
rent component. The architect activates the wizard by press-
ing “Fix It” and works through a sequence of dialog boxes.
At each step the wizard explains the step and prompts the
architect to make or confirm specific design decisions, such
as choosing FlexiSpell as the alternative components to use.
The wizard offers to automatically parameterize FlexiSpell
with some of the same parameter values used for
SpellQuick and then offers to connect it to the same sur-
rounding components. As with manual changes, other crit-
ics may raise or withdraw criticism based on the state of the
design.

Step 11: Record.  Wizards are task-specific user interfaces.
Here, the task is the resolution of a specific feedback item.

The multiple changes made during the wizard interaction
can be added to the design history as a logical group and
marked as the resolution to the original criticism.

Step 12: Advise.  In this branch of the scenario the architect
reads the design feedback headline and possibly the
problem description and decides not to address issues of
component selection right now. He or she may simply read
past this feedback item and move on to other items. This
would leave any other feedback about alternative
component choices in the “to do” list.

Step 13: Improve.  If the architect wants to focus the “to
do” list on other issues he or she may update the decision
model to indicate that component choice issues are not of
interest at the moment. This action improves the state of
the user model. This causes all alternative component
choice critics to be deactivated and their criticism
withdrawn.

Step 14: Record.  The fact that feedback items were with-
drawn because of a change in the decision model is
recorded in the design history. The new record consists of
the new state of the changed part of the decision model and
references to the creation records of all feedback items that
were withdrawn.

Step 15. In this branch the architect decides that the criti-
cism is currently not of interest, but also declines to take the
time to update the user model. Pressing the “Hush” button
temporarily disables the critic and hides all “to do” items
raised by that critic. After several minutes the critic is auto-
matically re-enabled and its outstanding feedback items
reappear on the “to do” list. Hushing is only a feedback
management operation, not a step in the critiquing process,
and no feedback items are being raised or resolved.

Step 16: Improve.  In the final scenario branch the archi-
tect never looks at the alternative critic’s feedback. How-
ever, in the normal course of working on the architecture, he
or she decides to replace SpellQuick with a new custom
component that does not have the same interface as any
component in the library. The alternative critic’s feedback is
automatically withdrawn as soon as Argo/C2 determines
that it is no longer valid.

Step 17: Record.  Argo/C2 records each change made to
the architecture as the architect works. At some point
Argo/C2 determines that the alternative critic’s feedback is
no longer valid. Argo/C2 then searches its recent design his-
tory for the operations that affected the items offenders.
One of those operation records is selected as the resolution
to the problem and annotated with a reference to the item’s
creation record.

In sum, Argo/C2 provides a variety of levels of support for
improvement and recording design changes. The architect
receives feedback about possible improvement opportuni-
ties and is free to act on them according to his or her own
initiative. If the architect chooses to make a suggested
design change, a wizard may be provided to guide and par-
tially automate the task.

Activate Detect Advise Improve Record
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Figure 11: Forking Timeline of Scenario Steps

Figure 12: Argo/C2’s Feedback Dismissal Dialog



Page 12

2.4. Relation between ADAIR and the Broader 
Software Process

The design process is only one part of a complete software
development process. ADAIR focuses on critiquing and
design improvement and does not address the usual con-
cerns of software process modeling, such as project plan-
ning, work-flow, or scheduling. Instead, ADAIR provides a
simple and useful description of a small, recurring process
fragment.

Even though design is only one part of the overall software
development process, it is an important one. Many features
of the product being built are determined during design and
much of the rest of the product development process is
affected by design. For example, a complex design calls for
much more implementation effort and possibly a larger
development organization than would be needed for a sim-
ple design; also, a design that anticipates future adaptations
correctly is much easier to maintain than one that assumes
that no requirements will change.

The phases of ADAIR do not correspond to phases or stake-
holders in the broader software process, but critics may sup-
ply knowledge that does. One type of design critic
represents the interests of a certain project stakeholder, for
example a quality assurance manager. Other critics may be
used as conditions on progress through the development
progress, for example in a waterfall process all criticism
related to incompleteness in the design must be resolved
before implementation can begin. Furthermore, the state of
the broader software process may be used to determine
which critics should be active, for example one set of critics
is relevant during early conceptual design while another set
is relevant during low-level design that is oriented toward a
specific implementation language.

3. Comparison of Approaches to Intelligent 
User Interfaces
This section addresses the first, more general, level of the
survey. Here we situate the critiquing approach in the space
of intelligent user interface approaches. Intelligent user
interfaces are systems that structure or modify their inter-
face elements based on implicit or explicit models of the
user or the user’s task [15]. Table 3 characterizes several
intelligent user interface approaches with respect to the
phases of the ADAIR process shown in Figure 7. The rating

in each cell of the table is a subjective score from zero to
three points based on how well each approach supports each
ADAIR phase. We discuss each of these approaches below.

3.1. Tutoring Systems
Tutoring systems, such as Geometry Tutor [16] or the legal
argumentation tutor of Ashley and Aleven [17], are used in
classrooms or other training environments by students try-
ing to master the material in a lesson. A typical session with
a tutor starts with the student reading new lesson material
that is presented by the system. Then students solve prob-
lems that test their understanding of the material. The tutor
tracks the student’s progress, provides explanations that
reinforce topic areas that the student might not fully under-
stand, and selects new problems to further probe the stu-
dent’s understanding.

Tutoring systems use detailed user models to implicitly acti-
vate tutoring rules and to customize the advice given to stu-
dents. Tutoring systems evaluate a student’s work and
provide feedback to help the student achieve specific lesson
objectives. Tutoring systems do not improve the artifact
themselves, that is the task of the student. However, they
are constructive in that they give procedural hints to stu-
dents that are having difficulties with the assigned task.
Recording may be done for the purpose of grading, but the
most direct use of recording is to update and refine the user
model as the student makes progress.

Tutors differ from critics in that tutors are intended to help
students with artificial educational exercises, whereas crit-
ics aid professional designers in actual work situation.
Tutors must be programmed with detailed knowledge of the
objectives of the exercise and overall lesson plan. Further-
more, they must possess or be able to generate, a complete
solution. This requirement limits application of tutoring
systems to domains that are very well understood and where
the number of users justifies the cost of authoring. In con-
trast, critics must function with partial knowledge as the
problem and solution co-evolve [52].

3.2. Critiquing Systems
Critiquing systems are design tools intended for use by pro-
fessional designers in their normal practice, however they
may also be useful in classroom or “on the job” training. A
typical session with a critiquing system consists primarily
of the designer using the design tool to construct or modify

Table 3: Summary Comparison of Intelligent User Interface Approaches

Intelligent User
Interface Approach

ADAIR Critiquing Process Phase

Activate Detect Advise Improve Record

Tutoring systems HHH HHH HHH HH H

Critiquing systems HHH HH HH H H

Coaching systems HH HH HH H

Wizards H HH HHH H

Automatic Word Correction HHH HH HHH

User Interface Agents HHH HH HH HH HH
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a design. Only when specific improvement opportunities,
for example design errors, are detected do critics provide
feedback.

Critiquing systems can choose which critics should be acti-
vated based on a specification of design goals or the design
process. Critics detect problems in the proposed solution
and provide advice to the designer. The advice provided by
critics usually includes an explanation of the problem and
suggestions for improvement. Most critiquing systems do
not play an active role in the improvement of the design or
the recording of design activities. Detailed examples of cri-
tiquing systems are the focus of this survey and provided in
Section 4.

3.3. Coaching Systems

Coaching systems, such as COACH [20] and Lumire
(Microsoft Office Assistant) [18, 19], assist users by watch-
ing their actions and suggesting help topics. Coaching sys-
tems can be deployed in desktop applications and used by a
broad class of users. Users proceed to use the tool as nor-
mal, until the system detects a specific assistance opportu-
nity, for example misusage of one of the application’s
features. At that time the coach suggests a better way to use
the tool.

COACH is a dedicated system that is always activated.
Lumire is also always active; although it may be hidden, in
which case it only reappears to provide high priority feed-
back. COACH detects assistance opportunities with rules
and an adaptive user model, while Lumire uses a Bayesian
network. Feedback primarily consists of a set of help topics
or suggested actions to perform next. Improvement cannot
be made automatically because the objective is to cause the
user to learn and change their future behavior. However, the
advice given is rich in procedural knowledge. COACH
records interactions by updating its user model.

The primary difference between this approach and the cri-
tiquing approach is that coaches assist in tool usage while
critics assist in design decisions. Furthermore, feedback
presentation is more intrusive in coaching systems than in
critiquing systems because the goal of teaching tool usage
demands immediate feedback when breakdowns are
detected. Since the two approaches supply complementary
types of knowledge, it seems reasonable for a given system
to include both kinds of support. Furthermore, both coaches
and critics are intended for day-to-day professional use.

3.4. Wizards

Wizards, such as TaskGuide [21] and those found in
Microsoft Office [22], are user interface dialogs that guide
the user through a sequence of steps or decisions. Wizards
typically appear when an application is launched or they are
explicitly invoked. Each step of the wizard is shown in dia-
log box that provides or requests information and allows the
user to move on to the next step. Most wizards are modal:
the user cannot pause the wizard to manually change the
design and then continue the wizard. Usually the wizard
performs an automation once all needed information has
been entered and then disappears until it is invoked again.

Wizards are not concurrent processes and need not be acti-
vated by the system. Detection of assistance opportunities is
the user’s responsibility. The primary strength of wizards is
their procedural knowledge that allows them to explain and
perform the steps needed for specific design improvements.
For the most part, recording in wizards is limited to the abil-
ity to backtrack through steps to revise information; how-
ever, some wizards record decisions in the artifact being
designed.

Wizards differ from critics in the type of knowledge that
they provide to the designer and that they require from the
designer. Wizards provide procedural knowledge about how
to make a complex change to a design. While wizards are
gathering information needed for the change, they may
prompt the designer with explanations of some of the issues
involved in the change. Wizards typically require designers
to know that the supported design change would improve
the design, that the tool includes a wizard to support that
change, and how to invoke the wizard. In contrast,
critiquing systems provide much stronger support for
automatic activation and detection of assistance
opportunities, but little or no support for carrying out design
improvements. 

3.5. Automatic Word Correction

We consider two types of intelligent user interface for auto-
matic word correction: dynamic revision and spell check-
ing. Both are features commonly found in word processors
such as Microsoft Word and text editors such as Emacs.
Interlisp’s DWIM (Do What I Mean) feature is an example
of dynamic word correction applied in a programming
environment [26]. Dynamic revision systems watch what
users type and automatically replace some strings with oth-
ers. For example, in Microsoft Word “teh” is replaced with
“the,” and “HEllo” is replaced with “Hello.” Spelling
checkers are also familiar to users of word processors. Early
spelling checkers simply produced a list of the words in a
document that were not found in a dictionary; the actual
correction of the errors was left entirely to the user. Recent
spelling checkers have sophisticated rule bases, natural lan-
guage models, and user interfaces that automatically high-
light probable spelling errors as they are typed and offer
suggested corrections. 

Simple dictionary look-up certainly does not require
intelligence. However, the best spelling checkers suggest
replacement words based on heuristic rules that consider
common causes of spelling errors, knowledge of word
frequency in business writing, and the relationship of the
suspect word to the surrounding text. Kukich’s survey of
techniques for word correction covers the historical
development of these approaches and their application to
word processing, optical character recognition (OCR), and
speech recognition [24]. For example, Grudin found that
many spelling errors resulted from users accidentally
pressing two keys at once [25]. One heuristic rule often
used in offering suggestions is that misspelled words
usually have the first letter correct. The substitution tables
used in dynamic revision are also based on knowledge of
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capitalization rules and word frequencies in natural
language. 

Most dynamic revision and spell checking systems limit
user modeling to customizable dictionaries and require
explicit activation. However, they are strong on detection
and improvement in the limited domain that they address.
Dynamic revision is effective at making improvement,
however since it does not advise the user or ask for
confirmation, these improvements are sometimes undesired.
In fact, this word correction feature is most noticeable when
it has performed an undesired modification. Recent spell
checkers, in contrast, do visually advise the user and ask for
confirmation before making a change (e.g., a red, wavy
underline). This takes extra effort on the part of the user, but
gives a sense of control. New words can be recorded in the
dictionary when a valid word is encountered that is outside
the knowledge of the system.

Automatic word correction systems emphasize detection
and improvement, whereas critics focus on detecting poten-
tial problems and advising the designer. Spelling errors
occur at a single point in the document and can be explained
trivially. In contrast, the broader class of design errors that
critics can detect may involve design elements from differ-
ent parts of the design and explaining the errors may require
the tool to convey knowledge of the problem and solution
domains. Word correction systems do not need sophisti-
cated support for the Record phase of the ADAIR process,
in part, because spelling decisions are not interrelated, i.e.,
other writing decisions are not likely to depend on the spell-
ing of individual words.

3.6. User Interface Agents

User interface agents assist users primarily by continuously
retrieving or filtering information. For example, interface
agents can categorize and prioritize one’s email, filter news
streams, or recommend entertainment [27, 28, 29]. Agents
are directable: the user specifies a set of goals for the agent,
and the agent tries to fulfill those goals over a period of
time, with a minimum of further interaction with the user. In
some cases, the goals can be inferred from the user’s own
actions and reactions rather than stated explicitly.

Most user interface agent systems built to date have few
supported goals and thus keep all agents active. Agents
detect improvement opportunities based on models of the
user and goals. Once an improvement opportunity is
detected, agents may either advise the user of the opportu-
nity or, if confidence in the goal model is high, take imme-
diate improvement actions [27]. Agents do not record
histories, however they do learn rules and refine their user
and goal models by analyzing interactions with users and
other agents. 

When a user specifies the goals for a user interface agent,
they know of the existence of the agent and request that it
do something on their behalf. In contrast, designers may not
know of the existence of a particular critic until it has per-
formed its analysis task and delivered feedback. Critics are
implicitly activated based, in part, on the designer’s own
stated goals for the design. Ideally, user interface agents

learn from their interactions with the user and gain more
confidence in their own ability to carry out the user’s
wishes. Learning agents are most useful when personalized
to a particular user and are most reliable when the user per-
forms repetitive actions. In contrast, knowledge-based
approaches (such as critiquing, coaching, and tutoring) are
more suitable for design support where the designer may
lack needed knowledge.

4. Comparison of Critiquing Systems
This section addresses the second, more specific, level of
the survey. Our survey of critiquing systems literature
revealed over fifty articles describing thirteen different cri-
tiquing systems. In Table 4 we characterize these critiquing
systems according to their support for the phases of the
ADAIR process. Each system is given a score from zero to
three points for four of the five ADAIR process phases. The
scoring rules are presented in Table 5. We do not attempt to
evaluate the knowledge embedded in each system, instead
we focus on how that knowledge is applied, presented, and
ultimately used to improve the design. Many of these cri-
tiquing systems are integrated into design tools, while oth-
ers are stand-alone tools. 

Each system uses comparative critiquing, analytic critiqu-
ing, or both. Comparative critiquing supports designers by
pointing out differences between the proposed design and a
design generated by alternative means, for example a plan-
ning system with extensive domain knowledge. In this
respect, comparative critiquing systems are similar to tutor-
ing systems and suffer from the same authoring costs and
domain size limitations. Pointing out differences can lead
designers to make their design more like the generated
design or cause them to re-examine their reasons for making
different decisions. Comparative critiques can be confusing
when multiple good solutions exist that are very different
from each other. In contrast, analytic critiquing uses rules to
detect assistance opportunities, such as problems in the
design. This aids designers by guiding them away from rec-
ognized problems rather than guiding them to known solu-
tions. In general, analytic critics can be built incrementally
and applied throughout the design process. Substantial
domain knowledge is needed to implement analytic critics,
but they need not have access to a generated solution. This
allows analytic critics to be applied to a broader range of
domains. Avoidance of detectable errors is necessary but
not sufficient for good design.

We can categorize critics based on the type of domain
knowledge that they provide. Correctness critics detect syn-
tactic and semantic flaws. Completeness critics remind the
designer to complete design tasks. Consistency critics point
out contradictions within the design. Optimization critics
suggest better values for design parameters. Alternative crit-
ics prompt the architect to consider alternatives to a given
design decision. Evolvability critics address issues, such as
modularization, that affect the effort needed to change the
design over time. Presentation critics look for awkward use
of notation that reduces readability. Tool critics inform the
designer of other available design tools at the times when
those tools are useful. Experiential critics provide remind-
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ers of past experiences with similar designs or design ele-
ments. Organizational critics express the interests of other
stakeholders in the development organization. These critic
categories are descriptive rather than definitive. Some crit-
ics may belong to multiple categories, and new categories
may be defined, as appropriate for a given application
domain. Table 6 shows some examples of Argo/C2’s archi-
tecture critics and the type of knowledge that they can
provide.

Fischer offers the following critic classification dimensions:
active vs. passive, reactive vs. proactive, positive vs. nega-
tive, global vs. local [45]. Active critics continuously cri-
tique the design, whereas passive critics do nothing until the
designer requests a critique. Reactive critics critique the
work that the designer has done, whereas proactive critics
try to limit or guide the designer before he or she makes a
specific design decision. Positive and negative critics sup-
ply praise and criticism, respectively. Critics that analyze
individual design elements are termed local critics, while
critics that consider interactions between most or all of the
elements in a design are termed global critics. The systems
reviewed are split roughly evenly between use of active and
passive critics. Only SEDAR provides proactive critics, all
other reviewed critiquing systems are reactive. ATTEND-
ING, Framer, Janus, and CLEER offer praise, although it
plays a minor role in these systems. On the scale from local
to global, a vast majority of the critics in the systems
reviewed are near the local end and consider one or a few
design elements at a time.

In the summary comparison of critiquing systems (Table 4)
we score critiquing systems based on the features they
implement. We have not attempted to define a complete set
of possible features in a top-down fashion, instead we have
used a bottom up approach by looking at the features that

have been implemented in the systems reviewed and scor-
ing them on a scale of zero to three points. The rubric is
shown in Table 5.

In the following subsections we discuss each of these cri-
tiquing systems in roughly chronological order. The date of
first publication on each system is shown in Table 4.

4.1. ONCOCIN

In 1980, Teach and Shortliffe conducted a survey of doc-
tors’ attitudes regarding computer based clinical consulta-
tion systems [35]. Some of their conclusions at that time
were that (1) doctors are accepting of systems that enhance
their patient management capabilities, (2) they tend to
oppose applications that they feel infringe on their manage-
ment roles, (3) such systems need human-like interactive
capabilities, and (4) 100% accuracy in the system’s advice
is neither achievable nor expected. 

These findings suggested a new direction for computing
systems that support clinical practice. Previous medical
consulting systems such as MYCIN and MV are reviewed
in [34]. These systems follow the traditional expert system
user interface paradigm and were evaluated primarily in
terms of their knowledge content, rather than their impact
on practice. The critiquing concept arose from the realiza-
tions that the system should support doctors without infring-
ing on their decision-making authority and that systems that
were not 100% accurate could play a useful supporting role.

The next year, Langlotz and Shortliffe reported on the con-
version of ONCOCIN, an expert system for the manage-
ment of cancer patients, to the critiquing approach. Initial
versions of the system functioned as an expert system that
produced plans that essentially consisted of a set of drugs
and dosages. The intended users felt “annoyed” at having to

Table 4: Summary Comparison of Critiquing Systems

System Year of First 
Publication

ADAIR Critiquing Process Phase Provides All 
CapabilitiesActivate Detect Advise Improve Record

ONCOCIN 1981 Comparative H 3

ATTENDING family 1983 Both HH H 3

Janus family 1989 HH Analytic HH H H 3

Framer 1990 HH Analytic HH HH 3

KRI/AG 1992 Analytic HH H

CLEER 1992 Analytic H 3

VDDE 1993 H Analytic H H 3

TraumaTIQ 1993 HH Comparative HH 3

AIDA 1995 H Both H 3

UIDA 1995 H Both H H

SEDAR 1995 HHH Analytic HH HH 3

Argo family 1996 HHH Analytic HHH HHH HH 3

ICADS 1997 H Analytic H H
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override the systems advice when they did not agree with
the generated treatment plan [36]. ONCOCIN was con-
verted into an embedded critic: rather than use the system
primarily to generate treatment plans, doctors were intended
to routinely enter their own plans into ONCOCIN and the
system offered criticism as a side benefit.

ONCOCIN generated exactly one solution and offered
exactly one piece of advice for each patient, thus there was
no need for an activation strategy. Detection consisted of
simply comparing dosage levels and some other aspects of
the treatment plan. The criticism produced was more of a
directed explanation of the system’s solution than an actual
critique of the doctor’s treatment plan. For each significant
difference between the doctor’s planned dosage and the sys-
tem’s plan, ONCOCIN reported the difference and offered
an explanation for ONCOCIN’s decision. A series of
prompts allowed doctors to traverse ONCOCIN’s goal hier-
archy to view explanations of intermediate steps in the sys-
tem’s reasoning. The system did not explicitly offer advice
on how to improve the doctor’s plan; the implication was
that the doctor’s plan could be improved by making it more
like ONCOCIN’s. ONCOCIN recorded a history of treat-
ment administered, but it did not record any proposed plans
that were later changed or the impact of its critiques.

The desire for a human-like user interfaces resulted in the
use of natural language for presenting advice. Emphasis on
natural language interfaces is seen in many medical sys-
tems, including all of the medical critiquing systems
reviewed. In contrast, all of the non-medical critiquing sys-
tems reviewed use graphical indications, constant strings, or
simple textual templates; none of them use sophisticated
natural language generation.

4.2. The ATTENDING Family

At about the same time that ONCOCIN was being devel-
oped at Stanford, Miller was developing the ATTENDING
system at Yale. The ATTENDING paper appeared months
before the ONCOCIN paper, and Langlotz and Shortliffe
cite Miller’s work. However, we place ONCOCIN earlier in
the time-line of critiquing systems because the sequence of
publications that lead to ONCOCIN was begun before the
ATTENDING publication and ONCOCIN provided a more
primitive form of critiquing than did ATTENDING.

Like ONCOCIN, much of the emphasis of ATTENDING
was on the avoidance of the negative effects of the tradi-
tional expert system user interface. “ATTENDING avoids
the social, medical, and medicolegal problems implicit in
systems which simulate a physician’s thought processes,
and thereby attempt to tell him how to practice
medicine” [39].

ATTENDING advises an anesthetist in the proper design of
an anesthetic plan to be executed during surgery. ATTEND-
ING prompts the designer (in this case, an anesthetist) to
enter a description of the problem (a patient’s conditions)
and a proposed solution. ATTENDING then produces two
or three paragraphs of natural language criticism and praise
of the plan. ATTENDING can function as a design critic or
as a tutor. When used in actual practice it functions as a
critic, although its limited knowledge made it ineffective in
this role. Alternatively, it can function as a tutor, in which
case, the system poses a problem from a library of lessons,
then prompts the student to enter a proposed treatment plan
and critiques it. Any part of the proposed treatment plan that
does not trigger criticism is praised; this is done on the
assumption that a more positive tone will enhance accep-
tance of the tool. ATTENDING has mainly been used in
training [39, 40].

Other members of the ATTENDING family are HT-
ATTENDING [40], a critiquing system for management of
hypertension; DxCON [41], a critiquing system for the
radiological workup done in obstructive jaundice cases;
and, E-ATTENDING [42] a critiquing system shell for
building similar critiquing systems. 

A sample session with HT-ATTENDING is shown in
Figure 13. The system’s knowledge-base includes two treat-
ment plans for managing hypertension with drugs (one is
shown in Figure 14) and several rules about drug interac-
tions and contra-indications of drugs. HT-ATTENDING
performs comparative criticisms by determining the
patient’s current step in the treatment plan, and comparing
the proposed treatment to the next step. In the example
ATTENDING recognizes cholrthalidodone as a diuretic and

 

Table 5: Critiquing System Rubric

Activate. Each system earns one point in the Activate col-
umn for each of the following features:
• having any activation strategy,
• offering multiple activation strategies,
• employing a goal model for activation, or
• employing a process model for activation.

Detect. Since we are not evaluating the knowledge content of
critiquing systems, they are not given points for their detec-
tion ability. Instead, we indicate the type of detection mecha-
nisms employed.

Advise. Critiquing systems earn points in the Advise column
by:
• providing explanations of problems detected,
• allowing the designer to conveniently browse feedback,
• graphically indicating feedback in the design document,
• providing supporting design context, e.g., the email

address of a person to contact for more information, or
• generating context sensitive, natural language text.

Improve. One point for the Improve column is given to each
critiquing systems for each of the following:
• including improvement instructions in the feedback,
• proving graphical cues that indicate what the designer

should do to make improvements, or
• providing automation to (semi-)automatically fix identified

problems.

Record. Points for support in the Record column are earned
by:
• updating user models, design process models, or design

goals models over time,
• supporting the designer in entering design rationale, and
• automatically recording how criticism was resolved.
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infers that the patient has reached step one of the standard
treatment plan; the proposed use of guanethidine does not
match step two, so the system suggests a beta blocker or
sympathetic blocker and warns against the use of a step four
drug before step three drugs have been tried. HT-ATTEND-
ING can also produce analytic criticism by applying its con-
tra-indication rules. For example, the use of beta blockers
with a patient who has had prior heart problems is contra-
indicated.

None of the systems in the ATTENDING family have user
models or goal models. All critics are always active. This
approach to critic activation is reasonable for these systems
because the number of critics is limited and all criticisms
support the implicit goal of improving the patient’s health.
Detection is done by comparative and analytic rules. These
systems do not generate a new solution. Instead, they are
programmed with knowledge of standard treatment plans.
Advice is presented in high-quality natural language text
that is organized to present the most important criticisms
first, it also includes references to further information on
drugs and medical studies. However, the advice is orga-

nized by the system and cannot be browsed or managed by
the user, making it unscalable. Weak support for improve-
ment results from the constructive phrases used in text gen-
eration. The ATTENDING-family systems treat each case
independently and do not prompt the user to enter a revised
treatment plan, and thus cannot record whether their criti-
cism was followed or ignored.

4.3. The Janus Family

The Janus family consists of several versions of a household
kitchen design environment, named successively Crack,
Janus, Hydra, and KID [44-60]. Designers use these sys-
tems by choosing a floor plan layout and placing cabinets,
counters, and appliances in that floor plan. One panel of the
Janus user interface window shows the current state of the
kitchen, while other panels show a palette of available
design materials, example floor plans, and feedback from
critics. Additional windows are used for argumentation and
specification of design goals. A library of IBIS-like argu-
ments about alternative design decisions is available [52].
Goal specification sheets prompt the designer to provide
information through a structured set of choices, for exam-

Figure 13: A Sample Critique by HT-ATTENDING (from [40])

The patient is a 59-year-old woman with a history of congestive heart failure.
Current regimen: cholrthalidodone 50 mg qd, propranolol 160 mg bid
Proposed regimen: cholrthalidodone 50 mg qd, propranolol 160 mg bid, guanethidine 20 mg qd
In the United States, diuretics are recommended by most authorities as an initial or step one therapy. A thiazide
diuretic or similar acting agent is the drug of choice for most patients. Cholrthalidodone has the advantage that it is
long-acting and can be given once a day.
A beta blocker is, in general, our preferred step two agent. Clearly, in a patient with decompensated congestive heart
failure, however, all beta blockers should be avoided in favor of alternatives, such as central sympathetic blockers or
possibly captopril. On the other hand, in certain patients with well compensated congestive heart failure, a beta blocker
may be useful. Here pindolol, which has intrinsic sympathomemetic activity (ISA) may well be the beta blocker of
choice.
Guanethidine should be reserved for patients who have not responded to other agents since it is often poorly tolerated
and difficult to administer. Thus for this patient, we would suggest first trying a step three drug, such as hydralazine,
prazosin, or possibly captopril before using guanethidine which we reserve for use as a step four agent. When treat-
ment with guanethidine is begun, we recommend that all other treatments, except diuretics be stopped. If you do use
guanethidine, we would suggest starting treatment with a lower dose that you propose. We recommend that guanethi-
dine be given once a day starting with a dose of 10 mg and increasing slowly until the desired therapeutic effect is
achieved or intolerable toxicity occurs.

Figure 14: HT-ATTENDING’s “Preferred” Treatment Approach (from [40])
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ple, “How large is the family using this kitchen?”, and “Is
the cook right- or left-handed?” Furthermore, designers
using Hydra can select a critiquing perspective (i.e., critiqu-
ing mode) to activate critics relevant to a given set of design
issues and deactivate others.

Janus’s goal model and critiquing perspectives are used to
implicitly activate critics relevant to stated design goals.
Janus automatically applies analytic critics that detect prob-
lems and produce brief descriptions with links into a hyper-
media argumentation database. Janus’s critics primarily
advise the designer of problems, while the argumentation
describes both problems and possible solutions. In KID,
feedback items are sorted by priority. Corrective automa-
tions that improve the design are not supported. Decisions
can be recorded as additions to the argumentation database,
but these are not interpreted by the system and do not repre-
sent the history of a single design.

4.4. Framer

The Framer design environment [61-64] supports user
interface window layout done with CLIM (the Common
Lisp Interface Manager). One panel of the Framer window
is used to edit the current state of the design. A checklist
panel shows a static list of tasks to be performed in the
design process, with one checklist item marked as the
current task. Another panel describes what the designers
should do during the current task and lists relevant
commands. A panel titled “Things to take care of” presents
the system’s advice for improving the design. Beside each
piece of advice are buttons to explain the problem, dismiss
the criticism, and, in some cases, automatically fix the
problem. 

The two main contributions of Framer are its use of a pro-
cess model to activate critics and the fact that it offers cor-
rective automations. Framer uses a checklist interface
metaphor to group feedback according to suggested steps in
a prespecified process model. This process model is also
used to activate critics when timely. Analytic critics in
Framer detect incompleteness in the design and incorrect
use of user interface elements. Framer’s advice is presented
in constructive terms that match the checklist paradigm; for
example, “Add a menu bar” is presented instead of “Menu
bar is missing.” Framer strengthens support for improve-
ment by associating corrective automations with feedback
items. For example, once the lack of a menu bar has been
identified, a single button press will direct Framer to auto-
matically add a menu bar. No support is provided for
recording design decisions or the resolutions of critic’s
feedback items.

4.5. KRI/AG

Like Framer and UIDA, KRI/AG [65] is intended to support
designers of graphical user interfaces. The knowledge-base
used in KRI/AG is taken from published guidelines on
designing Motif user interfaces. The benefit of KRI/AG is
that it provides this knowledge to designers in a more effec-
tive way than do printed style guides. Designers use
KRI/AG by first entering their user interface layouts into
the TeleUSE GUI builder, then they save their work in a file

and invoke KRI/AG on it. Lowgren and Nordqvist do not
discuss the presentation of advice to the designer, but they
do give examples such as the following:

“There is no Help menu in the menu bar. Every appli-
cation should have a help menu. The recommended
standard menus in the menu bar are File, Edit, View,
Options, and Help, in that order. (Motif Style Guide
p. 7-42)” [65]

“None of the items in the menus of the menu bar have
accelerators. It is a good idea to use accelerators for
the most frequently used items. (Motif Style Guide,
3.3.2, 4.2.3, pp. 7-3, 7-4)” [65]

KRI/AG does not have a user or task model: once the
designer invokes the system, all critics are applied. KRI/AG
detects improvement opportunities by means of approxi-
mately 70 rules like the one shown in Figure 15. Advice
from KRI/AG consists of simple textual templates that
describe the problem in somewhat constructive terms.
KRI/AG does not provide direct support for improving the
design or recording the resolution of the criticism it raises.

One result of the KRI/AG research is that many published
user interface guidelines cannot be evaluated solely with
respect to static information in the design. Often guidelines
depend on assumptions about how an interface will be used.
For example, the second feedback item quoted above can
only be accurately detected if run-time monitoring is per-
formed to determine which menu items are accessed most
frequently.

KRI/AG does not satisfy all of our requirements for a cri-
tiquing system because it is not integrated into a design tool
and it is not tightly integrated into the designer’s task.
While KRI/AG may help designers better evaluate their
designs, as does any useful analysis technique, it is not
likely that designers will run the tool while they are still in
the mental context of the decisions being critiqued.

4.6. CLEER
Configuration assessment Logics for Electromagnetic
Effects Reduction (CLEER) is loosely integrated with a
computer aided design (CAD) system for placement of
antennas on military ships [66]. The placement of antennas
on ships affects the performance of the antennas, the radar
profile of the ship, and the function of other ship-board
equipment. Designers using CLEER position antennas in a
CAD model of a ship. When the designer presses an “Eval-

Figure 15: Example KRI/AG Rule (from [65]).

Rule PopupMenuTitle in OSF_MOTIF Is 
ForAll ?inst WhichIs Motif$XmOioulMenu; 

If 
Not (Class(MenuItem(?inst, 1) = “XmLabel”)) 

Then 
MakeComment(“The popup “, ?inst.Name, “does not have a 

title. Every menu should have a unique title placed at the 
top. (Motif Style Guide 4.2.3)”); 

End;
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uate” button, feedback from critics is displayed in a scroll-
ing log window.

CLEER does not automatically activate critics and has no
user or design task model. Analytic critics in CLEER detect
problems with mechanical and electromagnetic features of
the design. CLEER primarily informs the designer using
negative feedback. Positive feedback is also included, but
Silverman and Mehzer report that it is largely ignored by
designers. The system does not constructively aid the
designer in improving the design or recording a design
history.

Silverman and Mezher propose an enhanced version of
CLEER that would use decision networks to add support for
activation, advisement, and improvement [66]. Decision
networks are discussed more in Section 5.2. 

4.7. VDDE
The Voice Dialog Design Environment (VDDE) [67-69] is
a design environment for voice dialog systems, for example
the menu structure of a voice mail system. Good voice dia-
log design, like any form of user interface design, can
improve productivity and reduce the opportunity for errors.
Stylistic guidelines help to keep multiple voice dialog sys-
tems consistent with standards, for example, every menu
should allow the user to exit by pressing the star (“*”) key.
Furthermore, two voice dialog designs can be compared for
consistency with each other, for example, if one system uses
the “2” key for the “send” function, then the other system
should also use “2” for “send.”

Designers use VDDE by placing menu nodes in a connected
graph. Each menu node consists of several key-pad choices,
and each choice is linked to an action or another menu.
Designers may also specify voice prompts, voice recording
actions, and numeric entry actions including valid ranges. In
addition to visualizing the menu structure, designers can lis-
ten to a simulation of what a user of the system would hear.
Critics display their feedback as one-line messages in a
scrolling log window. A separate control panel window is
used to configure the critiquing system.

VDDE does not automatically activate critics based on a
user or goal model. Instead, designers directly specify
which sets of critics should be active, their priorities, and
how actively they should be applied. Unlike Hydra, multi-
ple sets of critics can be active simultaneously. Critics
detect incompleteness and style guideline violations. Ana-
lytic critics are used to detect incompleteness and style
guideline violations, while comparative critiquing is used to
evaluate consistency between two particular designs.
VDDE’s advice is prioritized and consists of a brief descrip-
tion of a problem, a set of offending design elements, and a
link into an argumentation database. Problem descriptions
are generated from textual templates that are filled in with
details of the problem situation. VDDE does not provide
corrective automations or phrase its criticism in construc-
tive terms. Support for recording design decisions is similar
to that found in the Janus family.

Sumner, Bonnardel, and Kallak did an exploratory study of
four professional voice dialog designers using VDDE [69].

All four designers were observed while they used VDDE.
One unexpected observation was that designers anticipate
critics and change their behavior to avoid them. This is pos-
itive if designers are avoiding decisions that are known to
be poor. However, the designer’s understanding of the rule
may be inaccurate and lead to “superstitious” avoidance of
some decisions. The fact that designer’s rapidly internalize
criticism emphasizes the need for each criticism to provide
a clear explanation. Another observation was that experi-
enced designers tended not to change their designs in
response to criticism. Instead, they stated why they thought
that their decisions were correct. This can be interpreted as
a negative result in that suggested changes were not carried
out. However, if critics act as foils that prompt designers to
externalize their design rationale and expertise, the effect
could be exploited to support the recording of design deci-
sions. Another interpretation is that criticism should be lim-
ited to clear-cut problems and phrased persuasively so that
they are not so easily argued against. However, doing so
would abandon much of the potential range of application
of critiquing systems.

4.8. TraumaTIQ
TraumaTIQ is a stand-alone system that critiques plans for
treatment of medical trauma cases, such as gunshot wounds
[70-78]. One emphasis of TraumaTIQ is the time-critical
nature of its domain: the patient’s health depends on getting
the correct treatment, and on getting it as soon as possible.

A doctor or scribe nurse enters treatment orders into the sys-
tem as they are performed. Recording of treatment is tradi-
tionally done on paper “trauma flow sheets.” TraumaTIQ
infers the doctor’s treatment goals from these orders and
generates its own treatment plan. If substantial differences
are detected between the generated plan and the entered
orders, TraumaTIQ presents a dialog box with a few con-
cise, natural language critiques.

TraumaTIQ determines which criticisms are relevant by
analyzing the doctor’s treatment plan to infer its goals. Each
action can support multiple goals in TraumaTIQ’s knowl-
edge-base; a greedy algorithm is used to select those goals
that are best supported. In comparison, ONCOCIN and
ATTENDING address much narrower domains and support
only a single goal. The system then generates its own treat-
ment plan and detects assistance opportunities by compar-
ing it to the doctor’s plan. Each difference results in a
feedback record with an expected disutility value and is
classified as tolerable, non-critical, or critical.

Advice is presented in the form of English text generated
from the feedback records, textual templates, and a domain-
specific language model. Each piece of advice contains a
brief explanation and is sorted by urgency in the output win-
dow. Of all the systems reviewed, TraumaTIQ has the most
sophisticated support for natural language text generation,
and is the only one that can combine multiple, related feed-
back records into a single, brief piece of advice. The follow-
ing example demonstrates the quality of the generated text
and the system’s inference of a goal based on treatment
actions: “Getting a chest x-ray seems premature at this
point. There is not enough information to justify ruling out a
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simple left or right pneumothorax.” Here, TraumaTIQ has
been told that the doctor ordered a chest x-ray and can infer
that the only reason for an x-ray is to check for air in the
chest cavity. However, an x-ray is not sufficient to make a
conclusion and other treatment issues are more pressing.

TraumaTIQ does not provide automated improvement of
the treatment plan; the doctor must perform the suggested
treatment and enter it into the system manually. Likewise,
the system does not record the resolution of criticisms, how-
ever if the doctor does take action in response to the criti-
cisms, those actions will be used to refine the system’s goal
model.

4.9. AIDA
The Antibody IDentification Assistant (AIDA) is a tool
intended for use by medical laboratory technicians to cate-
gorize blood samples [78]. Despite the fact that misidentifi-
cation can potentially result in the death of a patient, most
practitioners learn this skill “on the job.”

The antibody identification task is primarily a problem solv-
ing task: the technician must interpret a panel of tests done
on a batch of blood samples and classify each clinically sig-
nificant antibody as ruled out, unlikely, likely, or con-
firmed. In forming a complete solution, technicians must
first make a partial solution, use their limited knowledge to
evaluate it in terms of how well it explains the data, and
then revise their solution. We consider this task to be sub-
stantially similar to problem solving sub-tasks of the design
tasks supported by other reviewed systems. 

Traditionally, the identification task is done by filling in a
grid on a paper form; AIDA’s user interface is centered on
an electronic version of this form. A separate critiquing
feedback dialog box is presented when the practitioner
reaches certain steps in the design process and the proposed
solution differs from one generated automatically by the
system.

AIDA assumes a simple task model that recognizes three
types of events: (1) the designer makes any change to the
design, (2) the designer switches from one screen to
another, and (3) the designer declares that the task is com-
plete. AIDA associates critics with each of these three event
types and activates timely critics when each event occurs.
Correctness critics are applied after each change to the
design. Completeness critics are applied only when switch-
ing between screens. All other types of critics are applied
when the designer declares the design complete. Analytic
critics are used to detect implausible data in the design.
Comparative critics are used to detect differences between
the designer’s solution and an automatically generated solu-
tion, for example, if the designer’s solution rules out a type
of antibody that the system’s solution does not. Advice is
generated from simple textual templates and each piece of
feedback is presented immediately in a dialog box. AIDA
does not offer to automatically correct identified problems
and it does not record design histories or criticism
resolutions.

Since AIDA is capable of generating its own solution to
most antibody identification problems, one might wonder

why a human user is involved in problem solving at all. The
reason stems from the fact that the system is not completely
competent in solving all problems. If the system were to be
totally automated, the human user would still have to solve
the problem independently to decide whether to accept the
machine generated solution. Humans do a very poor job at
this task, and frequently err by assuming that an incorrect
solution is correct, or by following the system’s explanation
“down the garden path” to the same incorrect solution. Fur-
thermore, users of automated expert systems can be
expected to reduce their skill level over time due to the lack
of practice. However, verifying the correctness of a solution
to the antibody identification task can require more skill
than designing a new solution. Roth, Malin, and Schreck-
enghost refer to this as the “irony of automation” [5].

Guerlain et al. evaluated AIDA by asking thirty-two profes-
sional laboratory technicians from seven different hospitals
to solve four difficult problems [78]. Half of the subjects
were assigned to use AIDA with the critics turned on and
half worked with the critics turned off. In total, the group
that did not use critics had twenty-nine errors in their solu-
tions, while the group using critics had only three errors.
These three errors arose in one of the problems where the
system’s knowledge was incomplete and it could not gener-
ate a correct solution. Despite this incompleteness, the
critic-using group still did better on that problem in compar-
ison to the eight errors produced by the control group. This
is the most in-depth system evaluation reported for any of
the systems reviewed, and the only one with overwhelm-
ingly positive results.

4.10. UIDA

The User Interface Design Assistant (UIDA) is a stand-
alone system that critiques user interface window layouts
for compliance with Motif style guidelines and consistency
with other window layouts in the same application [79]. A
designer works with a standard window layout editor, then
saves the design to a file, then invokes UIDA to critique and
modify the design. When UIDA detects a style violation, it
asks the designer to confirm its suggested improvement,
and then automatically changes the design.

UIDA has no user model to implicitly activate critics, but
the designer may explicitly activate groups of style rules.
UIDA performs analytic critiquing by applying 72 style
rules written in an OPS5-like language. UIDA performs
comparative critiquing by recording and comparing the par-
ticular set of rules satisfied by each layout. Comparative cri-
tiquing of this type does not require a generated solution.
Relative to other systems reviewed, UIDA is weak in
advisement and strong in improvement. Advice is limited to
a sequence of brief prompts asking the designer to confirm
suggested changes. Corrective automations are provided
with the rules and result in a new version of the window lay-
outs at the end of the critiquing session. A history of rule
applications is kept only for the duration of the session to
support comparing different layouts.

Like KRI/AG, the UIDA system does not satisfy the
requirement that critiquing systems provide advice to
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designers while they are in the mental context of making
design decisions.

4.11. SEDAR

The Support Environment for Design and Review (SEDAR)
is a critiquing system for civil engineering. Specifically, it
supports the design of flat and low-slope roofs [80-83].
Many guidelines for roof design are available to practitio-
ners, yet approximately 5% of roofs constructed in the U.S.
fail prematurely, in part because of design errors. SEDAR is
intended to support two distinct groups of people: designers
and reviewers. 

SEDAR is tightly integrated into a CAD program. While
designers work with the CAD program to enter their design
decisions, critics check the design for problems. The pres-
ence of problems is indicated by a status message, and a
dialog box that lists outstanding problems can be accessed
through a menu. In some cases SEDAR can visually suggest
a design improvement by drawing a new design element in
one corner of the screen and draws an arrow to the general
area where the new element should be placed.

SEDAR provides three activation strategies: error preven-
tion, error detection, and design review. The error preven-
tion strategy works before designers commit to certain
design decisions, for example, as soon as the designer
begins placing a mechanical unit in the design, illegal areas
are visually marked-off on the design diagram. The error
detection strategy implicitly applies active critics to the
design as changes are made. The design review strategy
provides a batch of criticism for use by reviewers after the
design is considered complete. Within the error detection
strategy, critics are activated based on the state of a process
model called the Designers’ Task Model (DTM) and a
Requirements Hierarchy Model (RHM). The DTM is essen-
tially a work-breakdown structure for the roof design pro-
cess. Additional relationships in the DTM indicate
suggested temporal relationships and logical dependencies
between steps. For example, decisions made during the
drainage system layout step are known to be likely to inter-
act with decisions made during the chimney layout step. A
subset of all tasks in the DTM are marked as “focus” or
“active” based on the designer’s recent interactions with the
tool. Each design requirement in the RHM can be marked
“on” if critiquing relevant to that goal is desired, or “off” if
it is not. The SEDAR system activates only those critics that
support process steps in the “focus” or “active” state and
requirements in the “on” state.

Assistance opportunities are detected by applying a set of
design rules. Advice takes the form of brief error messages
that are phrased somewhat constructively. Feedback items
are sorted based on the type of design knowledge provided
(physical violations, specification violations, and preference
violations) and the activation (focus or active) of the DTM
step that the feedback supports. Improvement is supported
for some criticisms by displaying the type of design element
that should be added to resolve the problem and a general
location where it should be placed. However, the designer
must still use the normal CAD tool commands to make a

new instance of the suggested design element and place it
into the design. SEDAR does not record design histories.

SEDAR is unique among the critiquing systems reviewed
here in that it identifies two classes of project stakeholders:
designers and reviewers. Research on Argo acknowledges
the possibly disparate interests of different stakeholders, but
it does not name specific types of stakeholders. Every other
system reviewed is intended to be used by designers only.
SEDAR’s authors outline a broader design process in which
the design document is repeatedly passed between designers
and reviewers, causing many project delays. Unfortunately,
SEDAR’s supports each group of stakeholders indepen-
dently: there are no critics that advise designers how to
make designs that are easier to review. For example, there is
no critic that warns the designer to avoid using mechanical
equipment that is not familiar to the reviews.

4.12. The Argo Family

We have built on the previous work described above and
implemented specific support for each phase of the ADAIR
critiquing process. The Argo family [84-87] of design envi-
ronments consists of three tools: Argo/C2, Prefer, and
Argo/UML. Software architects use Argo/C2 to enter a
high-level specification of the structure of a software sys-
tem. Prefer is used to model state-based requirements docu-
ments in the CoRE notation [89], a derivative of the SCR
requirements method [90]. Argo/UML uses the Unified
Modeling Language, a standard notation for object-oriented
design [88, 91]. Some examples of critics found in Argo/C2
are found in Table 6. All of these systems use a common
infrastructure which supports critics that are implicitly acti-
vated, analytically detect improvement opportunities, and
provide feedback which is presented in a dynamic “to do”
list.

The Argo infrastructure has both a user model and a goal
model to support activation. Argo’s decision model is auto-
matically updated when the architect works with Argo’s
process model, however Argo does not infer goals from the
partially specified design as does TraumaTIQ or infer the
current process step as does SEDAR. Argo’s critics analyze
the design and produce feedback items with more kinds of
design context than those produced by other systems; spe-
cifically, it provides a problem description, a suggestion of
how to solve the identified problem, and contact informa-
tion for relevant experts and stakeholders. Feedback man-
agement in Argo is more flexible than that of other systems
reviewed. Improvement is supported by constructive advice
and corrective automations, which may take the form of
wizards. Argo records design activities done in the environ-
ment and some of their relationships, but it does not yet
make much use of this information.

4.13. ICADS

Intelligent Computer Aided Design System (ICADS) sup-
ports architects in designing residential apartments [92].
Two critiquing modules are provided. A Floor Plan Design
eXpert (FPDX) reminds designers of building codes related
to fire exits and ventilation. An Interior Design eXpert
(IDX) provides somewhat heuristic advice about the style
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and comfort of the apartment design, for example people
should not have to pass through the kitchen on the way to
the bathroom. ICADS is loosely integrated with a CAD sys-
tem: a designer edits a design in the CAD system, saves the
design to a file, invokes ICADS on that file, and reviews the
design feedback produced by ICADS.

ICADS does not have a user or task model and does not
implicitly activate design critics. One simple activation rule
found in ICADS is that the interior design expert is only
applied if no problems were detected by the floor plan
design expert. ICADS’s critics are analytic and are imple-
mented as a PROLOG program that uses forward-chaining
to detect rule violations. An example ICADS critic is
described in Figure 16. Each feedback item provides a short
textual suggestion for solving the identified problem.
ICADS does not record design histories.

ICADS is not integrated into a design tool, and thus cannot
provide designers with feedback while they are still in the
mental context of the decisions that are being critiqued.

5. Conclusions
5.1. State of the Art of Critiquing Systems
Research on critiquing systems has been motivated by three
main observations: (1) in certain domains it is impractical to
build expert systems that are acceptable to users, (2) human
designers sometimes make costly errors that could be
avoided with better tool support, and (3) design is a cogni-
tively challenging task that could be eased with tool support
to help designers overcome specific difficulties. The earliest
system reviewed, ONCOCIN, was done as a reaction to user
rejection of expert systems in the medical treatment plan-
ning domain. Most of the reviewed critiquing systems,
including CLEER and SEDAR, focus on identifying spe-
cific types of errors and try to warn designers about these
errors. The Janus family and the Argo family of design
environments address the much broader scope of cognitive
support.

The critiquing systems reviewed have primarily been
research systems that have seen little practical use. Each
system explores some aspects of design support while
ignoring others. Also, the critiquing systems reviewed have
all been fairly limited in the number of critics and the scope
of their domain. To date, no “industrial strength” critiquing
system has been implemented and deployed. This is in part
because little work has been done on the software engineer-
ing issues of developing reusable infrastructures, develop-
ment methodologies, or authoring tools for creating
critiquing systems.

Overall, existing critiquing systems provide incomplete
support for designers’ cognitive needs. In most of the sys-
tems reviewed, design critics detect and highlight errors, but
they require designers to do much of the work of activation,
feedback management, design improvement, and recording.

Table 6: Example Critics in Argo/C2
Name of Critic

Explanation
Critic Type Decision Category
Interface Mismatch This component needs certain messages be sent or received, but they are not 

present.Correctness Message Flows
Direct Connection Violation of C2 style guidelines. Consider using a message bus to allow new 

components later.Correctness System Topology

Component Choice Here are other components that could “fit” in place of what you have: <<list of 
components>>.Alternative Component Selection

Too Much Memory Calculated memory requirements exceed stated goals. Try adjusting individual 
components, or moving some components to other hosts.Correctness Machine Resources

Too Many Components There are too many components at the same level of decomposition to be easily 
understood. Remove components or group components into a subsystem.Evolvability System Topology

Hard Combination to Test If you need to use these components together, please make arrangements with the 
testing manager.Organizational Component Selection

Generator Limitation The default code generator cannot make full use of this component. Consider 
using a different component or code generator.Tool Component Selection

Portability Questionable Your colleague, <<name of person>>, has reported difficulty using this compo-
nent under <<name of operating system>>.Experiential Portability

Figure 16: An Example ICADS Rule (from [92])
Condition: The master bedroom should be behind the 

central lines of the house, i.e., away from the 
main entrance. 

Reason: People prefer a more private and quite 
location for the bedroom. 

Suggestion: Move master bedroom away from front part 
of house.
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Detecting and highlighting errors is itself a useful form of
support.

5.2. Research Directions Suggested in Previous 
Work

One difficulty with using critics is that designers are often
made uncomfortable by the critic user interface metaphor.
The metaphor is that of a critical person always watching
over one’s shoulder and finding fault with every decision.
Designers using systems that follow this metaphor would
face constant challenges to their authority, feel the need to
guard against criticism, and rarely accept suggestions. Sum-
ner, Bonnardel, and Kallak found that designers using the
Voice Dialog Design Environment (VDDE) often changed
their behavior to avoid situations where critics might fire
and rarely followed the critic’s advice [69]. TraumaTIQ
lessens this effect by limiting provided feedback and focus-
ing on urgent problems [77]. Framer and ATTENDING
attempt to counter the negativity of critics with small
amounts of praise [62, 39]. In building Argo we have tried
to mitigate this effect by making critics constructive and by
replacing the critic metaphor with that of a dynamic “to do”
list. Critics in Argo are constructive whenever possible:
their feedback explains the problem and its relevance to
stated goals, suggests resolutions, and offers corrective
automations in some cases. In fact, designers may find that
design feedback provides more direct access to these auto-
mations than do standard command menus. The dynamic
“to do” list metaphor does not challenge designers author-
ity, instead it reminds them of pending decisions. We expect
experienced designers to be familiar and comfortable with
having many pending decisions.

Silverman and Mezher [66] propose decision networks as a
new direction for critiquing systems that will give more
complete design support. Decision networks are related
groups of agents that together provide support for most
phases of the ADAIR process. A dialog generation
component activates appropriate agents based on a task
model. Influencers provide tutoring before or during a task,
usually by coloring regions of the design diagrams to
indicate legal choices for the current design decision.
Debiasers provide negative feedback when mistakes are
made, as do most critics. Clarifiers present feedback to
designers in graphical or textual form. Directors provide
task-specific support for carrying out improvements, as do
wizards. Silverman and Mezher suggest that debiasers
should learn from interactions with designers; specifically,
it should suppress criticism that the designer had previously
rejected. In Argo, critics and wizards are used in
combination. Possible uses of machine learning in design
support are discussed below.

5.3. Trends in Intelligent User Interfaces
Comparing critiquing systems to more mature forms of
intelligent user interfaces suggests how critiquing systems
themselves might mature.

1. Integration into design tools and design tasks. Early
spelling checking systems were stand-alone programs that
only identified errors without offering fixes, in contrast

modern spelling checkers are tightly integrated with word
processors and provide sophisticated correction capabilities.
Critiquing systems should also be tightly integrated into
design tools and provide automation to ease correction
tasks.

2. Improvement without requiring confirmation.  When
confidence in the assistance opportunity and the corrective
action is high enough, corrective action can be taken with-
out consulting the user. This occurs in dynamic revision and
user interface agents under certain conditions. Likewise,
some design critics may have enough confidence to make a
correction without notifying the designer. Doing so relieves
the designer of the burden of interacting with critics for
every error, however it runs the risk of changing the design
in ways that the designer did not intend. One conservative
way to manage the problem of unintended design changes is
to only automate the most obvious corrective actions. User
preferences, design histories, and support for out-of-order
undo may allow wider application of automatic improve-
ments to while still keeping designers informed and in
control.

3. Combination with other approaches.  Most wizard
systems require explicit activation and do not proactively
detect when they are applicable to the current design, but
they strongly support design improvements. Tools such as
Microsoft Office’98 have shown that wizards combined
with coaches, which are strong on activation and detection,
are more effective than either feature alone.

5.4. Our Recommendations for New Research 
Directions in Critiquing Systems

We recommend that future research on critiquing systems
attempt to achieve more comprehensive support for identi-
fied challenges of design, and provide more automation to
support identified design tasks. Furthermore, experience
with larger critiquing systems is needed to uncover issues of
scale and practical use. Specifically, we recommend the fol-
lowing.

1. Combination with other approaches.  Critics should be
combined with other types of intelligent user interfaces that
provide complementary strengths. For example, coaches
can be embedded in design tools alongside critics to deliver
two complementary types of knowledge. Also, critics can
be combined with wizards to make wizards’ procedural
automation more accessible and critics’ feedback more con-
structive.

2. Organization-specific critics. More research emphasis
should be placed on the use of critiquing systems in the con-
text of a development organization. Most critiquing work to
date has provided support for a specific design domain, e.g.,
low-slope roof design, or a specific design notation, e.g., the
Unified Modeling Language. Little work has been done on
critics that advise designers about the interests of other
stakeholders in the development organization. Typically,
organizational policies are conveyed to designers in memos
or employee manuals. These paper-based communications
are often not effective; this is true, in part, because the com-
munication happens outside the context of day-to-day
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design work. We expect that critics can be an effective
means of making designers aware of the organizational con-
sequences of design decisions. Fulfilling the potential of the
research direction will likely require integration with orga-
nizational memory systems or adoption of some of their
concepts.

3. Reusable critiquing infrastructure.  A reusable, scal-
able, domain-independent critiquing infrastructure should
be developed based on the ADAIR process. To date, each
critiquing system implementation has essentially been
started from scratch. This has limited the scale and depth of
these systems and the research topics that have been
explored. Without an infrastructure that supports authoring
and application of thousands of critics, critiquing systems
will not provide enough knowledge to make a significant
impact on design practice. Without addressing the finer
points of critiquing strategies, feedback presentation and
management, and constructiveness, critiquing systems will
not provide their knowledge effectively enough to make a
significant impact on design practice. Without systems large
enough to make a significant impact on practice, research
efforts have been limited to laboratory studies.

4. Critic development life-cycle.  Little work has been
done on the maintenance and management of critics, since
most critiquing systems have only reached the prototype
stage and have never been expanded to large numbers of
critics or deployed to large numbers of users. One exception
to this is the work done by Fischer et al. on “seeding, evolu-
tionary growth, and reseeding” [57]. Critic development
proceeds through a life-cycle in which useful critiques are
identified, implemented as critics, refined as the result of
use, and may eventually be retired. Most critics in the sys-
tems reviewed arose from domain analysis by tool builders
rather than being nominated by practicing designers. Argo
allows designers to email their comments on the usefulness
of particular critics to critic maintenance staff. More infra-
structure should be put in place to facilitate communication,
collect statistics that measure the return on investment in
critics, and that guide maintenance and development of crit-
ics. Features from organizational memory systems, usage
monitoring, and software metrics may prove useful in main-
taining and managing critics.

5. Critic implementation language. No widely useful
critic implementation language has been proposed to date.

Some of the systems reviewed use expert system shells to
implement critics, while others implement critics in third-
generation programming languages. Future research should
explore the possible advantages of special purpose critic
languages as compared to the use of more general-purpose
languages. Many researchers have investigated end-user
programming, e.g., [112, 113]. However, none has been
successfully demonstrated as useful to practicing designers.
One key point of comparison is the capability for practicing
designers to easily specify improvements to critics.
Figure 17 shows our proposed graphical notation for
specifying critics and wizards. The flow of control starts at
the left-most node and proceeds to the right, taking all
branches, until a condition is not satisfied. Rounded
rectangles indicate conditions that must be satisfied. If
control reaches a bull’s-eye node, the critic fires and
generates feedback. Rectangular nodes describe dialog
windows presented to the user as a step in the wizard.
Parallelogram nodes are actions that modify the design or
user model. We hope that practicing designers will be able
to easily propose changes that add a new case where the
critic should fire or that place a new restriction on an
existing case.

6. Limited machine learning.  Machine learning tech-
niques could be used to fine-tune the activation of critics,
priorities for design feedback, and the organization of feed-
back into categories. The main knowledge content provided
by critics cannot be effectively learned from designers,
because many types of design decisions happen rarely and
the designer’s own knowledge may be lacking. However,
some of the interactions between designers and critics are
repetitive and could be made more effective by using
machine learning. For example, if a critiquing system
allows the designer to categorize feedback items into fold-
ers (much like email systems do), then the same techniques
used in email sorting interface agents could be used. Fur-
thermore, programming by demonstration may allow
designers to make critics more constructive by repeatedly
demonstrating how a certain type of design error can be cor-
rected, and then allowing the critic to perform that correc-
tion automatically of after a brief confirmation dialog. User
interface agents capable of this form of learning are
described in [27] and [31].

The purpose of an abstract class is to define a 
common interface and behavior for sublasses.

Abstract classes should allow subclasses.

Class C has no effect on the system, since it has
no concrete subclasses and defines no constants.

Class C is abstract C has no subclasses C has no constants Name subclass

Define constant

Add subclass

Add constant

C is declared Final Unset Final flag

Make concrete? Unset abstract flag

Figure 17: Diagrammatic Representation of Two UML Critics and Associated Wizards.
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7. Integration with design rationale systems.  Design
rationale systems support designers by capturing and mak-
ing available information about the reasoning behind design
decisions [93-97]. We feel that critics can help elicit design
rational by prompting designers to make, change, or explain
their decisions. Also, the knowledge contained in design
rational is an important form of design context that can be
used by critics when presenting identified problems to
designers. The Janus and Argo families of design environ-
ments each support design rationale in different ways. Janus
emphasizes delivery of rationale to explain criticism but
does not provide much support for the task of building a
hypermedia argumentation database. Argo captures a log of
how design criticism is resolved, including any rationale
entered by the designer when feedback is dismissed; how-
ever, it does not provide support for retrieving rationale
when needed. To better serve designers, design support sys-
tems should include design rationale features that aid in
both the collection and retrieval of rationale.

We have shown that the phases of the ADAIR critiquing
process can serve as check-list items when evaluating the
completeness of support provided by critiquing systems,
and intelligent user interfaces in general. We also believe
that ADAIR can be used constructively in the design of new
critiquing systems. Furthermore, combining critics with
corrective automations makes them constructive, which not
only provides more complete support for designers’ tasks,
but also mitigates the negative connotations of the critic
metaphor.
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Appendix A: Citation Graphs

Table A-1 shows the critiquing papers referenced in this
survey, grouped by year and system. Arrows indicate that
one paper at the base of the arrow cites a paper indicated at
the head of the arrow. Arrowheads do not always refer to
papers referenced in this survey, instead they indicate the
group of authors and year of the publication cited.

Figure A-1generalizes the information in the table. Nodes in
the diagram indicate groups of collaborating authors.
Arrows indicate that one or more papers by the authors at
the tail of the arrow cite one or more papers by the authors
at the head. The line thickness indicates our subjective eval-
uation of the degree to which one body of work is based on
the other. 
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